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In this Supplementary Material we provide additional
details that were not included in the main paper due to space
constraints. In Section 1 we extend the discussion about
probabilistic pose models. In Section 2 we describe in detail
the architecture of our model. Section 3 includes all train-
ing details whereas Section 4 describes the datasets used
for training and evaluation. FInally, in Section 5 we report
additional quantitative and qualitative evaluations.

1. Additional discussion
Heatmap-based methods One additional class of non-
parametric probabilistic models for 3D human pose estima-
tion is the heatmap-based methods [14]. Heatmap-based
methods allow for pose sampling (for each joint, we first
sample a voxel and then sample again uniformly inside each
voxel), as well as likelihood evaluation for a given pose.
However the main issue with heatmap-based methods is that
by design the probability distribution is factorized, i.e.,

p(θ|I) =
∏
i

p(θi|I), (1)

for all joints θi = (xi, yi, zi). This type of model is prob-
lematic for sampling because it can lead to unrealistic poses,
e.g., in ambiguous cases where the output heatmaps are
not unimodal, since each joint location is sampled inde-
pendently of the other joints. Moreover, it is not possible
to extend heatmap-based methods to non-Euclidean output
spaces such as the space of SMPL parameters.

2. Architecture details
In this Section we describe in detail the architecture of

the proposed model. In Figure 1 we show the design of
the proposed flow model and the information flow both in
forward and reverse mode. The implementation of fcoupl is
shown in Figure 2, whereas Figure 3 depicts the architecture
of the residual block used in fcoupl. The number of chan-
nels in the residual block is n = 1024. For the partitioning
of x = (x1, x2), we alternate between the odd and even
dimensions of x in each successive coupling layer to allow
sufficient information propagation. The flow architecture is
the same for both ProHMR and the probabilistic version of

Martinez et al. [11]. The only difference is that for ProHMR
the latent dimension is d = 6 · 24 = 144, whereas for the
2D skeleton lifting is d = 16 · 3 = 48. We use 16 joints
instead of 17, since the pelvis location is always at (0, 0, 0).

3. Training details
We implemented our model using PyTorch [13]. Our

Normalizing Flow implementation was based on the
nflows package [3].

ProHMR We trained our model for 500K iterations with
a batch size of 64 using the Adam optimizer [6] with learn-
ing rate 0.0001 and weight decay 0.0001. Training takes
about 2.5 days on a NVIDIA RTX2080Ti using mixed pre-
cision. For the final loss and loss weights, we use a more
fine-grained distinction than the generic described in the
main manuscript. The final training loss is written as:

L = λnllLnll

+ λexp,2DLexp,2D + λexp,advLexp,adv

+ λmode,2DLmode,2D + λmode,advLmode,adv

+ λmode,θLmode,θ ++λmode,βLmode,β

+ λmode,3DLmode,3D + λorthLorth,

where Lmode,∗ and Lexp,∗ refer to the corresponding terms
included in the loss functions. More specifically, Lmode,2D
and Lexp,2D are the reprojection loss for the mode and
the expected reprojection loss respectively, Lmode,θ and
Lmode,β and Lmode,3D are penalties on the SMPL param-
eters and 3D joint locations and Lmode,adv and Lexp,adv
are the adversarial priors. We use `1 penalty for the losses
on the 2D and 3D keypoints and `2 penalty for the loss
on the SMPL parameters. For all losses we sum over all
dimensions and then divide by the batch size. The loss
weights are: λprob = 0.001, λexp,2D = 0.001, λexp,adv =
λmode,adv = 0.0005, λmode,2D = 0.01, λmode,3D = 0.05,
λmode,θ = 0.001, λmode,β = 0.0005 and λorth = 0.1.

2D pose lifting We trained our model for 300K iterations
with a batch size of 64 using the Adam optimizer [6] with
learning rate 0.0001 and no weight decay. Training takes
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Figure 1: Normalizing Flow architecture. The figure shows the implementation of f(θ; c) and its inverse using Normalizing
Flows. Left: Behavior of our model in the sampling phase (map z → θ). Right: Behavior of our model in the likelihood
evaluation phase (map θ → z).

Figure 2: Coupling layer architecture. The figure shows the implementation of fcoupl and its inverse. Left: Behavior of our
model in the forward phase. Right: Behavior of our model in the inverse phase.

Figure 3: Residual architecture. The figure shows the im-
plementation of the residual block used in the coupling lay-
ers fcoupl and its inverse.

about 7 hours on a NVIDIA RTX2080Ti. Since we have
full 3D supervision, the final loss function is:

L = λnllLnll + λmode,3DLmode,3D,

with loss weights λprob = 0.001 and λmode,3D = 1.0.

4. Datasets
In this part we give a short description of the datasets

used for training and evaluation. The dataset that we use
are Human3.6M [4], MPI-INF-3DHP [12], 3DPW [15],
MPII [1], COCO [10] and Mannequin Challenge [10].
Human3.6M It is a studio-captured benchmark for 3D hu-
man pose estimation. It includes several different actions
performed by various subjects We follow standard practices
in the literature and use subjects S1, S5, S6, S7, S8 for train-
ing and subjects S9 and S11 for evaluation.
MPI-INF-3DHP It contains data captured primarily in in-
door studio environments and the 3D pose data is captured
using a marker-less setup. We use the predefined training
and testing splits for training and evaluation respectively.

3DPW It is a dataset captured in a variety of indoor and
outdoor locations and uses IMU sensors combined with a
2D pose detector to compute pose and shape ground truth.
Following standard practice, we use this dataset only for
evaluation in the predefined test split.
MPII It is a dataset containing images of people annotated
with 2D keypoint locations. We use this dataset for training.
COCO It is a large scale dataset used among other ap-
plications for object detection, segmentation and pose es-
timation. We use 2D keypoint annotations from the
train2014 split to train our model.
Mannequin Challenge It is a dataset of videos of people
staying frozen in diverse natural poses. We use the SMPL
annotations generated by [9] and employ the entire dataset
(train, test, validation) for evaluation.

5. Additional evaluations
5.1. Evaluation metrics

Here we give an outline of the metrics used for evalua-
tion. To evaluate the 3D pose we use the Mean Per Joint Po-
sition Error (MPJPE) which computes the mean Euclidean
error between the predicted and ground truth joints, after
aligning the two poses at the pelvis. With PA-MPJPE we re-
fer to the error after aligning the prediction with the ground
truth pose by performing Procrustes alignment.

ProHMR Consistently with HMR [5], CMR [8] and
SPIN [7], for evaluating the models that predict SMPL pa-
rameters we report the error on the 14 common LSP joints,
except for MPI-INF-3DHP where we use all 17 joints pro-
vided by the dataset. For Human3.6M with the exception of



the multiview experiment (Table 4 of the main manuscript)
we evaluate using the frontal camera, whereas for the mul-
tiview experiment we use all available cameras.

2D pose lifting To evaluate on Human3.6M we report
MPJPE and PA-MPJPE computed on the 17 body joints and
use frames from all available cameras.

5.2. Additional details

We clarify that for the model fitting experiment (Ta-
ble 3 of the main manuscript) “H36M (OP)” refers to fitting
the SMPL model to the OpenPose detectioins, whereas for
“H36M (GT)” we use the ground truth 2D keypoints. Also,
when we refer to the minimum error of samples from the
learned distribution (Table 2 of the main manuscript), we
use n = 4096 samples. For results with smaller n, we sam-
ple n = 4096 random poses from the posterior and follow-
ing [2], we “quantize” them using K-Means. We would also
like to highlight that theoretically our model can generate an
arbitrary number of samples from the posterior, whereas for
the multi-head architecture of Biggs et al. [2], increasing the
maximum number of proposals requires a linear increase in
the model size as well as retraining a new model.

5.3. Quantitative evaluation

It is interesting to study how the minimum error of our
method scales with the number of samples. Figure 4 shows
the minimum PA-MPJPE with respect to the number of
samples drawn for the 2D pose lifting network. We can see
that the minimum error for our method decreases almost lin-
early in log-scale. At the same time we show that sampling
a large number of poses from our learned posterior achieves
significantly lower error than sampling the same number of
poses from the training distribution.
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Figure 4: The effect of sampling on 3D errors. We re-
port the minimum PA-MPJPE on Human3.6M for different
number of samples. To eliminate the effect of extra data, we
report results for the 2D pose lifting network [11] trained
on Human3.6M. Left: Error vs number of samples from the
learned posterior p(θ; c). Right: Comparison with drawing
an equal number of random poses from the training set.

In a similar setting, we compare the minimum error of
ProHMR using 4096 samples with drawing an equal num-
ber of samples from a Gaussian distribution centered around

n = 1 n = 25

Biggs et al. [2] 67.8 64.2
ProHMR 67.3 60.1

Table 1: Comparison with the approach of Biggs et al. [2]
on their AH36M dataset. Numbers are PA-MPJPE in mm.

the prediction. While ProHMR achieves a minimum PA-
MPJPE of 29.9mm, drawing 4096 samples fromN (θ∗, σI)
results in a minimum PA-MPJPE of 35.2, 41.1, 42.2 for
σ = 1, 10, 20 cm respectively. This is in part related to
the fact that Gaussian posteriors are unimodal. Addition-
ally, sampling directly from high dimensional Gaussians is
known to be problematic.

Finally, we also provide another quantitative compari-
son. We use the AH36M dataset (ambiguous version of Hu-
man36M [4]) from Biggs et al. [2] and compare directly
with the result of Table 1 from their paper, reporting the
full results in Table 1. Again, our approach outperforms
the baseline of [2] in this comparison, particularly when in-
creasing the number of samples n. Furthermore, we assess
the effect of our method in the downstream task of fitting
on AH36M. Even under the truncations of this dataset, our
image-based fitting outperforms SMPLify, with SMPLify
achieving a PA-MPJPE of 67.8mm, while our fitting ver-
sion achieves 61.4mm for the same metric.

5.4. Qualitative Results

In Figure 8 we show additional reconstructions of
ProHMR. We use pink color for the mode of the posterior
distribution. Moreover, in Figure 10 we include additional
comparisons between our fitting method and SMPLify ini-
tialized by our regression. An important observation is that
by using our image-based prior, the body orientation after
the fitting is significantly more accurate compared to SM-
PLify, especially in cases with truncated people.

In Figure 5 we show how the optimization-based pose
refinement is able to get more accurate pose estimates by
fusing information from multiple views. In the first view
the hands are mostly occluded and the recovered pose is not
very accurate, however after the joint pose refinement the
consolidated pose captures the true pose more faithfully.

Additionally, Figure 9 depicts examples of performing
interpolation in the learned latent space. Starting from
z = 0, we pick two random directions in Rd and then move
along those directions. Please note that there are no seman-
tics or explicit disentanglement in the latent space.

Finally, we highlight some failure cases of our method.
First, in Figure 6 we show failure cases for the regression
network. Remarkably though, if we have access to accurate
2D keypoint detections, then it is possible to recover from
such errors using our image-based model fitting. However,
the model fitting can in turn fail when there are wrong key-



Figure 5: Multiview refinement. Pink: Regression. Green:
Multiview refinement. Fitting with multiple views fixes the
position of the right hand.

Figure 6: Failure cases of pose regression. Some failure
cases of the regression (pink mesh) in challenging poses.
In these examples, the model fitting (green mesh) is able to
improve the pose reconstruction

Figure 7: Failure cases for the model fitting. The op-
timization can fail if there are wrong keypoint detections
with high confidence (rows 1 and 2) or very few detected
keypoints (row 3).

point detections with high confidence, or when there are too
few detected keypoints as we show in Figure 7.
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Figure 8: Samples from the learned distribution.. The pink colored mesh corresponds to the mode whereas we use purple
and yellow for the additional samples.

Figure 9: Interpolation in the latent space. We pick two random directions in the latent space and visualize the transformed
samples on each direction from a side view.



Figure 10: Model Fitting results. Pink: Regression. Green: ProHMR + fitting. Grey: Regression + SMPLify


